## Towards Grounding of Formulae

Takuto Asakura ${ }^{1}$, André Greiner-Petter ${ }^{2}$, Akiko Aizawa ${ }^{3}$, Yusuke Miyao ${ }^{1}$
${ }^{1}$ The University of Tokyo ${ }^{2}$ University of Wuppertal ${ }^{3}$ National Institute of Informatics

## Introduction

Targets: STEM Documents
Characteristics

## Example

- Not fully utilized
- Semi-structured
- Papers
- Textbooks
- Includes math formulae
- Manuals

Long-term Goal: Natural $\rightarrow$ Formal Conversion

## STEM Documents (Natural Language + Formulae)

Paper, Textbook, etc. | Calculating the mean of $n^{2}$ for $n=1,2$,, 10

Conversion
Computational Form (Formal Language)
Executable code, first-order logic, etc. $\mid$ mean([n^2 for n in range(1, 11)])

Short-term Goal: Token-level Analysis

- The first step for the conversion
- Still a developing area



## Grounding of Formulae

1. Finding math words (groups of tokens) which refer to mathematical concepts
2. Associating a corresponding mathematical concept to each math word


## Difficultly of the Grounding

- Various ambiguities in formulae
- Necessity of domain knowledge


## Usage of character y in the first chapter of PRML (except exercises)

Text fragment from PRML Chap. 1路 vertor ofráy vectors of rando variables $\mathbf{x}$ and $\mathbf{y}$ Function rep
Function representing an algorithm Output vector of function $\mathbf{y}(\mathbf{x})$ vector of random variables Part of pairs of values

## Dataset Creation (Manual Annotation)

Annotating all identifiers in a whole paper A Very Brief Introduction to Machine Learning With Applications to Communication Systems [Simeone, 2018]

## Annotation Example



a random variable for a test output for a regression problem
the average with the condition
the true joint distribution itself

## Math Word Occurrences in the Target Paper



