

Introduction		
Targets: STEM Documents		
 Characteristics Not fully utilized Semi-structured Includes math formulae Mathematical 		
Long-term Goal: Natural → Formal Con		
STEM Documents (Natural Language + Form		
Paper, Textbook, etc. Calculating the mean of n^2 for n		
Conversion		
Computational Form (Formal Language		
Executable code, first-order logic, etc. mean([n^2 for n in		
Short-term Goal: Token-level Analysis		
 The first step for the conversion Still a developing area 		

Grounding of Formulae

- 1. Finding math words (groups of tokens) which refer to mathematical concepts
- 2. Associating a corresponding mathematical concept to each math word

Towards Grounding of Formulae Takuto Asakura¹, André Greiner-Petter², Akiko Aizawa³, Yusuke Miyao¹ ¹The University of Tokyo ²University of Wuppertal ³National Institute of Informatics

ple pers xtbooks anuals version ulae) $= 1, 2, \ldots, 10$ range(1, 11)]) Subexpression Formula

Difficultly of the Grounding

Various ambiguities in formulae Necessity of domain knowledge

Usage of character y in the first chapter of		
Text fragment from PRML Chap. 1	Μ	
can be expressed as a function $\mathbf{y}(\mathbf{x})$	Fι	
\dots an output vector y , encoded in \dots	0	
\dots vectors of random variables x and y \dots	Ve	

Suppose we have a joint distribution $p(\mathbf{x}, \mathbf{y}) \dots$

Dataset Creation (Manual Annotation)

Annotating all identifiers in a whole paper A Very Brief Introduction to Machine Learning With Applications to Communication Systems [Simeone, 2018]

Math Word Occurrences in the Target Paper

of PRML (except exercises)

- leaning of **y**
- unction representing an algorithm Dutput vector of function $\mathbf{y}(\mathbf{x})$
- lector of random variables
- Part of pairs of values

Annotation Examp

e
$r \hat{t}$ for an input x
variable for a test input for a regression problem
rue joint distribution in general, without any specific definition
$(t, \hat{t}(x))]$
a given loss function
riable for a test output for a regression problem
e condition

x axis position in the article

y axis corresponding mathematical concepts