What Is Needed for Intra-document Disambiguation of Math Identifiers? Takuto Asakura and Yusuke Miyao, University of Tokyo @ LREC-COLING2024, Turin, Italy

Long-term Goal: P2C Conversion

STEM Documents (Natural Language + Formulae)

Paper, Textbook, etc. Calculating the mean of n^2 for n = 1, 2, ..., 10

Conversion

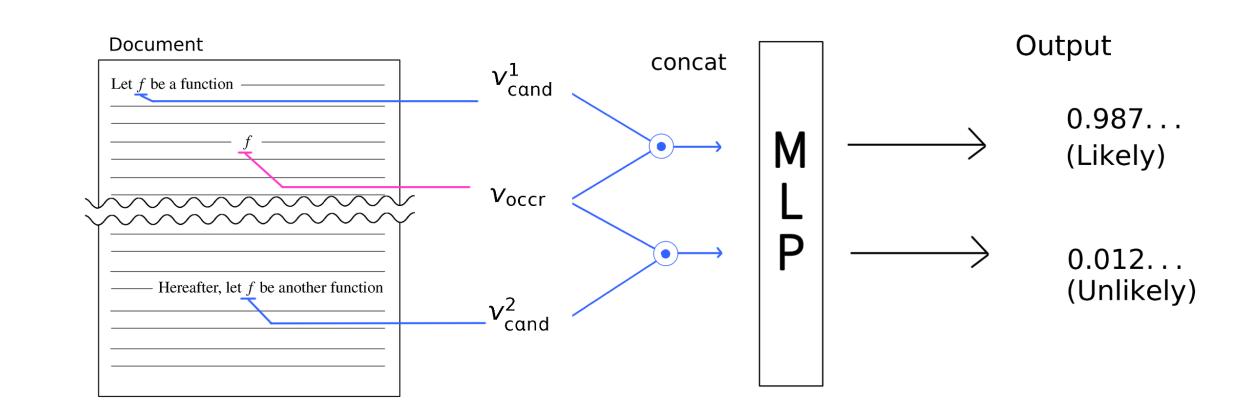
Computational Form (Formal Language)

Executable code, mean([n^2 for n First-order logic, etc. in range(1, 11)])

Technologies for the conversion

- NL: POS tagging, semantic parsing, text classification, etc.
- Formulae: Token-level analysis, parsing, etc.
- Integration of NL texts and formula analyses

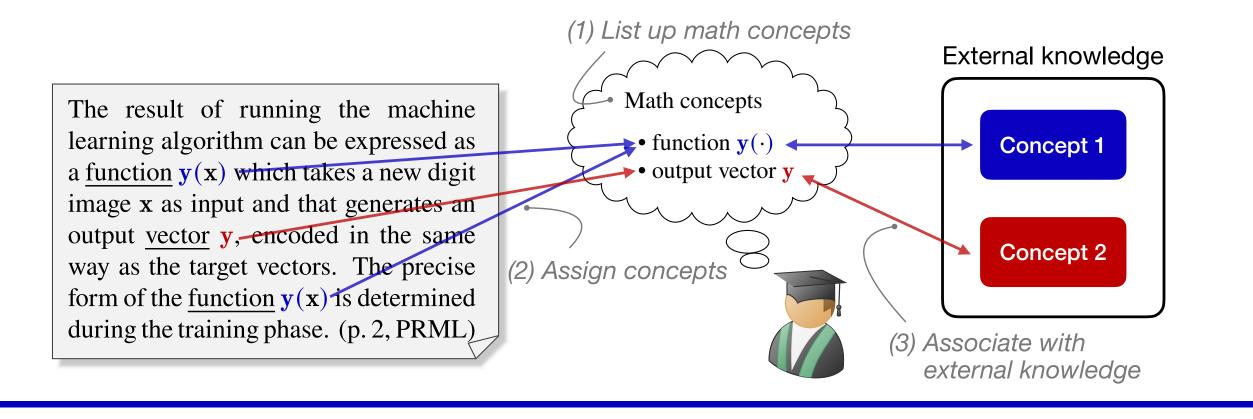
Usage of Multi-Layer Perceptron (MLP)



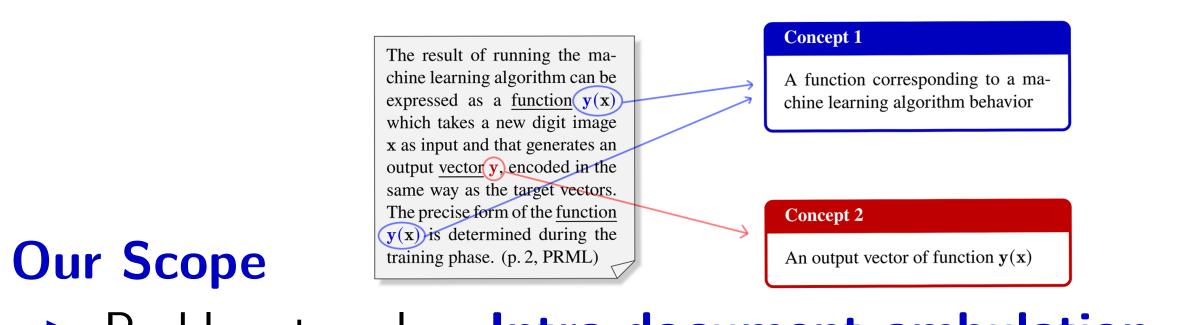
- The label set (candidate concepts) vary from paper to paper \rightarrow It is not a simple multiclass classification
- The use of MLP is somewhat unique
 - **1.** Make the pairs of (occurrence, concept) for each occurrence
 - **2.** Train MLP to predict the *likelihood of the correct pair*

Grounding of Formulae

- **1.** List up math concepts used in a document cf. Definition extraction
- 2. Assign a math concept to each math token occurrence
- **3.** Associate math concepts with external knowledge cf. MathIR



Math Concept Assignment



\rightarrow This method can be used for unknown label sets

Feature Engineering

c: Context Embeddings

- Natural language text surrounding the target occurrence
 - E.g. feature vector $v'_{x} \in tracted$
- Vector embeddings with Sentence Transformer [Reimers+, 2019]
 - Used MiniLM as a pretrained model (because it performed the best)
 - Impacts of window size and formula representation are little

a: Affix Types

- Local formula structure E.g. Use of sub-/super-script
- ► We built a rule-based detector \rightarrow Accuracy 90.56%

p: Position Data

Cascade effect scope and distance from the initial position \rightarrow effective even if it soley used (identical to cascade baseline)

Model Comparison

We trained our model with various combinations of the features

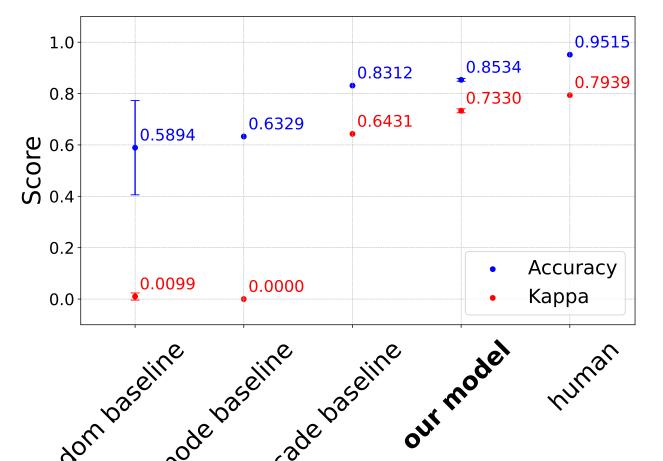
- Problem to solve: Intra-document ambulation
- Target: Math identifiers (most frequent token type) **Research Questions**
 - What is the *important feature* for the disambiguation?
 - Are those features *depends on domain* of the papers?

Task Overview

Input Structured document representation (XHTML) ► The *initial occurrence location* associated with each math concept for identifier = about 10% of the labels **Output** *Math concepts* assigned to every occurrence identifiers = remaining 90% of the labels

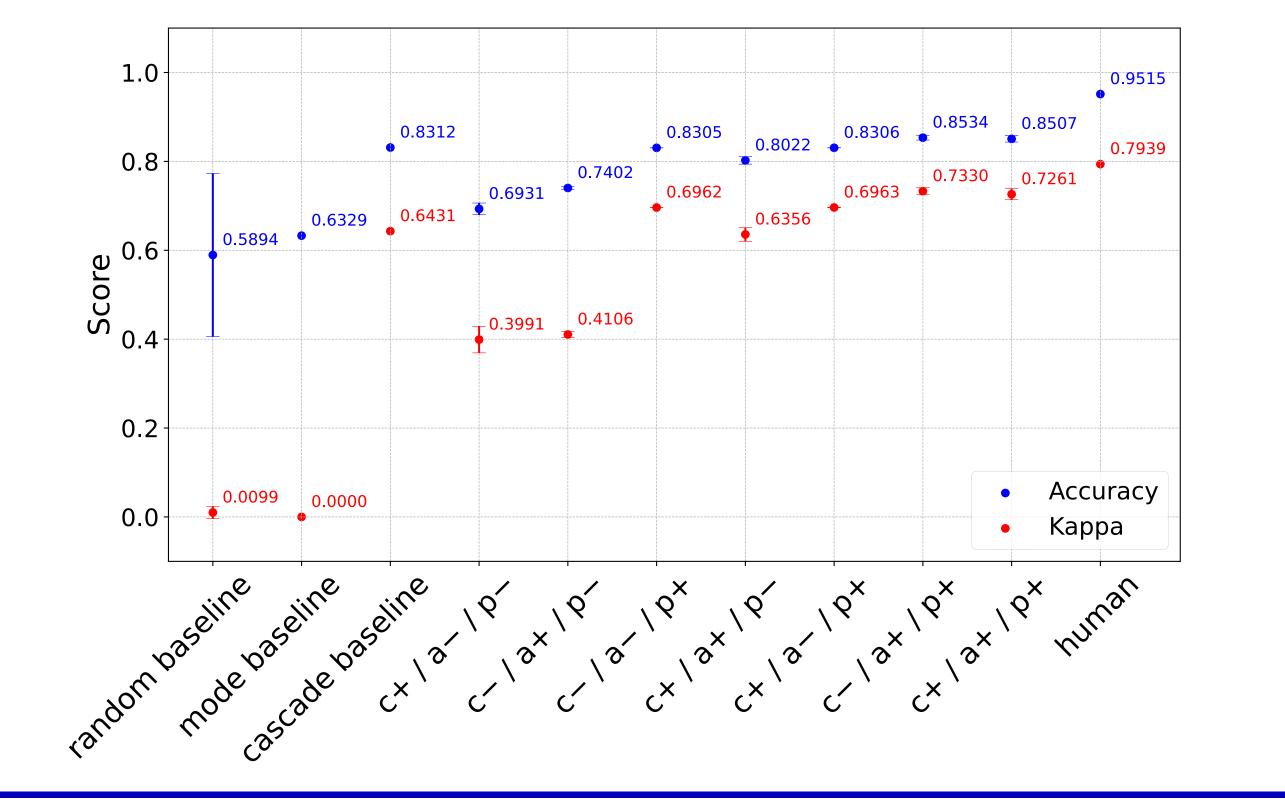
Task Difficulty

- Cascade baseline
 - = assuming no scope switches occurs except initial pos → Kappa **0.6431**
- Human annotators



JUI

- ▶ Model variations: $2^3 1 = 7$ models
- Used features are represented with a letter E.g. c+/a+/p-: the model using context and affix types



Cross-domain Comparison

We trained our models with NLP subset, and evaluated with others

→ Kappa **0.7939**

Use of Dataset

- Split the dataset according to the field of the paper
 - NLP subset: used for both development and evaluation
 - Others subset: used only for evaluation

Subsets of the Dataset					
Subset	#papers	#words	$\#idf_types$	#occrs	#concepts
NLP	20	97,045	789	9,278	1,518
Others	20	140,017	953	18,377	2,085
Total	40	237,062	1,742	27,655	3,603

https://sigmathling.kwarc.info/resources/grounding-dataset/

